Yoshida, W., and Hirose, K.
Fast same-step forecast in SUTSE model and its theoretical properties. Computational Statistics & Data Analysis, open access, 2023. https://doi.org/10.1016/j.csda.2023.107861
Hirose, K., Miura, K and Koie, A.
Hierarchical clustered multiclass discriminant analysis via cross-validation. Computational Statistics & Data Analysis, open access, 2022. https://doi.org/10.1016/j.csda.2022.107613
Teramoto, K., and Hirose, K.
Sparse multivariate regression with missing values and its application to the prediction of material properties. Numerical Methods in Engineering, 123(2), 530-546, 2022. https://doi.org/10.1002/nme.6867
Hirose, K.
Interpretable modeling for short- and medium-term electricity demand forecasting. Frontiers in Energy Research, 9, 2021. https://doi.org/10.3389/fenrg.2021.724780
Okinaga, Y., Kyogoku, D., Kondo, S., Nagano, A., and Hirose, K.
Relationship between gene regulation network structure and prediction accuracy in high dimensional regression. Scientific Reports, 11, 11483, 2021. https://doi.org/10.1038/s41598-021-90791-6
Hirose, K., Wada, K., Hori, M., and Taniguchi, R.
Event Effects Estimation on Electricity Demand Forecasting. Energies, 13(21), 5839, 1-20, 2020. https://doi.org/10.3390/en13215839
Hirose, K., and Imada, M.
Sparse factor regression via penalized maximum likelihood estimation. Statistical Papers, 59(2), 633–662, 2018. https://doi.org/10.1007/s00362-016-0781-8
Dolinský, J., Hirose, K., and Konishi, S.
Readouts for Echo-State Networks Built using Locally Regularized Orthogonal Forward Regression. Journal of Applied Statistics, 45(4), 740-762, 2018. https://doi.org/10.1080/02664763.2017.1305331
Hirose, K., Fujisawa, H., and Sese, J.
Robust sparse Gaussian graphical modeling. Journal of Multivariate Analysis, 161, 172-190, 2017. https://doi.org/10.1016/j.jmva.2017.07.012
Hirose, K., Kim, S., Kano, Y., Imada, M., Yoshida, M., and Matsuo, M.
Full information maximum likelihood estimation in factor analysis with a large number of missing values. Journal of Statistical Computation and Simulation,86(1), 91–104, 2016. https://doi.org/10.1080/00949655.2014.995656
Hirose, K., Ogura, Y., and Shimodaira, H.
Estimating Scale-Free Networks via the Exponentiation of Minimax Concave Penalty. Journal of the Japanese Society of Computational Statistics, 28, 139–154, 2015. https://doi.org/10.5183/jjscs.1503001_215
Hirose, K., and Yamamoto, M.
Sparse estimation via nonconcave penalized likelihood in a factor analysis model. Statistics and Computing, 25(5), 863–875. 2015. https://doi.org/10.1007/s11222-014-9458-0
Hirose, K., and Yamamoto, M.
Estimation of an oblique structure via penalized likelihood factor analysis. Computational Statistics & Data Analysis, 79, 120–132. 2014. https://doi.org/10.1016/j.csda.2014.05.011
Hirose, K., Tateishi, S., and Konishi, S.
Tuning parameter selection in sparse regression modeling. Computational Statistics & Data Analysis, 59, 28–40, 2013. https://doi.org/10.1016/j.csda.2012.10.005
Hirose, K., and Higuchi, T.
Creating facial animation of characters via MoCap data. Journal of Applied Statistics, 39(12), 2583–2597, 2012. https://doi.org/10.1080/02664763.2012.724391
Hirose, K., and Konishi, S.
Variable selection via the weighted group lasso for factor analysis models. The Canadian Journal of Statistics, 40(2), 345–361, 2012. https://doi.org/10.1002/cjs.11129
Hirose, K., Kawano, S., Konishi, S., and Ichikawa, M.
Bayesian information criterion and selection of the number of factors in factor analysis models. Journal of Data Science,9, 243–259, 2011. http://www.jds-online.com/files/JDS-682.pdf
Hirose, K., Kawano, S., and Konishi, S.
BAYESIAN FACTOR ANALYSIS AND INFORMATION CRITERION. Bulletin of Informatics and Cybernetics, 40, 75–87, 2008. https://doi.org/10.5109/18995
Hirose, K.
Editorial: Recent advances in sparse statistical modeling. Journal of the Japanese Society of Computational Statistics, 28, 51–52, 2015. https://doi.org/10.5183/jjscs.1510002_225
Hirose, K., and Higuchi, T.
Generating Artistic Character Facial Animation based on Motion Capture Data. Proceedings of The 2012 International Workshop on Advanced Image Technology, pp. 240–245, 2012.
Hirose, H., Soejima, Y., and Hirose, K.
NNRMLR: A Combined Method of Nearest Neighbor Regression and Multiple Linear Regression. Proceedings of 6th International Workshop on e-Activity, pp.351–356, 2012. https://doi.org/10.1109/IIAI-AAI.2012.76
(4) プレプリント
Hirose, K., Miura, K., and Koie, A.
Hierarchical clustered multiclass discriminant analysis via crossvalidation.
arXiv:2107.02324 (arXiv), 2021. https://arxiv.org/abs/2107.02324
Hirose, K.
Interpretable modeling for short- and medium-term electricity load forecasting.
arXiv:2006.01002 (arXiv), 2020. https://arxiv.org/abs/2006.01002
Hirose, K., and Terada, Y.
Simple structure estimation via prenet penalization.
arXiv:1607.01145 (arXiv), 2016. https://arxiv.org/abs/1607.01145